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Abstract

A general method is presented for determining the exact expansions of a tensor function F(A), where A is a second
order tensor in n-dimensional Euclidean space, and F(A) is defined by the power series. It is shown that F(A) can be
obtained by differentiating a scalar function of the eigenvalues of A. Using this method, closed-form, singularity-free
expressions of arbitrary tensor functions and their first derivatives are deduced in two- and three-dimensional cases.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is to establish a general method for determining finite term expansions for a tensor
function F(A) defined by the power series

FA) =all+ajA+ - +aA" +--- (1)
Here A is a second order tensor in n-dimensional Euclidean space. The scalar function
Sx)=a+ax+-+ax +--- )

is sometimes called the stem function for F(A). It is known that if the spectrum of A lies within the radius of
convergence of the series (2), then the tensor series (1) converges (Horn and Johnson, 1991). Tensor
functions defined via power series are frequently used in continuum and computational mechanics. For
instance, the exponential function is often employed in the numerical integrating of rate equation of the
form X = AX. If the full Newton-Raphson algorithm is employed in computations, the derivative of
function F(A) is required. Hence, it is always desirable to have closed-form, finite term expressions for F(A)
and its derivative.
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There exist several methods for determining F(A) and its derivative for a symmetric tensor A. Since a
symmetric tensor possesses a full set of orthogonal eigenvectors, one can represent F(A) and its derivative
in spectrum form, see Hill (1978) and Ogden (1984, Section 3.5) for a classical treatment in the context of
generalized strains. In recent years, the spectrum representations have been widely used in computational
mechanics (Simo and Taylor, 1991; Miehe, 1994; Miche, 1998; Miehe and Lambrecht, 2001; Papadopoulos
and Lu, 1998). Alternatively, exploiting the fact that F(A) is an isotropic function of A, one can directly
express F(A) in terms of polynomials of A, and likewise for its derivative (Guo, 1984; Hoger and Carlson,
1984; Ting, 1985). In contrast, there does not appear to exist a well-developed algorithm in the literature for
the general case, especially if the tensor A is not diagonalizable. Algorithms based on truncated infinite
series have been proposed (de Souza Neto, 2001). The accuracy and effectiveness of such algorithms is
limited by round-off and choice of termination criterion.

In this paper, we develop a novel method for computing an arbitrary tensor function of a general un-
symmetric tensor. We show that F(A) can be obtained by differentiating its generating function, a scalar
function of the eigenvalues of A. This approach is inspired by a recent paper of Kusnezov (1995) on the
exponential map for SU(n) group (i.e., group of tensors such that detA = 1), where author proposed the
idea of obtaining the exponential map from differentiating a scalar function with respect to group
parameters. In the present work, this approach has been systematically extended to any tensor function. In
addition, having identified F(A) as the derivative of a scalar function, the derivative of F(A) can be readily
computed as the second derivative. The method is then applied to two- and three-dimensional cases to
establish closed-form representations for arbitrary tensor functions and the first derivatives. To the best of
the author’s knowledge, the main theorem established in this paper, as well as the representation formulae
in two- and three-dimensional cases, have not been reported in the literature.

The paper is organized as follows: the main theorem is presented in Section 2, followed by a discussion of
various representations of the general formula under different parameterizations. Closed-form, singularity-
free representations for F(A) and its derivative in two- and three-dimensional cases are deduced in Sections
4 and 5.

2. General formula

In this section, we show that an arbitrary tensor function F(A) can be obtained by differentiating a
scalar-valued function of A, referred to as the generating function. To this end, first introduce an auxiliary
function

800 = [ F)dr = go+ @+ ganrt 4o, o)

where g( ia an arbitrary constant. It is known that the power series in (3) has the radius of convergence no
less than that of (2). Let {4, i =1,...,n} be the eigenvalues of A. Given F(A), the associated generating
function is defined by

G(A) =g(h) +g(h) + -+ g(4n). 4)

Next, define the derivative of a scalar-valued function ¢(A) by the standard formula (assuming all the
requisite smoothness conditions are satisfied)
O0p(A) d
Y H= = A+eH) VH, 5
o G| AT (5)
where the operation (-) means the inner product U -V = tr(UTV), and the superscript T stands for tensor
transpose.
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The main result of this paper is as follows:

Theorem. Let f(x) be an analytical function and F(A) be the associated tensor function defined by (1), and let
G(A) be the generating function given in (4). Then

F(A) = :TGT (6)
for any second order tensor A.
Proof. First, it is well-known that, if |4 < R (i = 1,...,n) where R is radius of convergence of power series
(3),, then {g(4;), i =1,...,n} are the eigenvalues of the tensor G(A) defined by

G(A):gol+a0A+-~-+i+llaiAf“+-~- (7)
See, e.g. Ting (1985). Hence, we identify G(A) = tr G(A). It follows then

G(A+¢H) = tr {gol +ag(A+eH) + -+ (H: 1)!a,-(A +eH) " | (8)
Notice

= S:Otr[(A + gH)fﬂ = (i+ V)tr[AH] = (i + 1)(A") - H, 9)

where used is made of the cyclic property tr[AjA, - - - A, ] = tr[A, - - - A, A]. Differentiating both sides of (8)
with respect to ¢ at ¢ = 0 leads to
0G(A)
0A

Therefore,

‘H= [l +a A"+ +a(AT)' + -] H=FA")-H. (10)

oG
T _
F(AY) = A (11)
Observing that
0G\" oG
T\ _ T _

and taking the transpose of both sides of (11) yields the stated result. [

Having established (6), it follows that the first derivative of F(A) is then given by

dF(A) oG (13)
0A  0AdA"
or, using components,
oF(A); &G

Ay 0Auody

In particular, if A is symmetric, we obtain
_0G  OF(A) G

F(a) TO0AT  0A  0AdA’
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aF(A) : :
aA~ possesses major symmetry, 1n the

As a useful corollary, Eq. (15) shows that if A is symmetric, then

sense that
O[F(A)]; o[F(A)],
aAkl B aAij . (16)

The generating function depends on the eigenvalues of A. Once the eigenvalues of A are obtained, the
formulae (6) and (13) can be directly applied. The method is completely general, as it applies to any tensor
function and arbitrary tensor, diagonalizable or not. The method is particularly effective in lower dimension
cases where closed-form eigenvalues are available. As will become evident later, the major advantages of
this approach relate to the facts that: (1) the generating functions can be judiciously parameterized, thus
allowing for optimal representations most suitable for a given problem; and (2) no knowledge of the
eigenspace is required. This largely alleviates the difficulty in dealing with tensors which do not possess a
full set of eigenvectors.

3. Selected representations
In this section we provide some representations for the general formula (6) in n-dimensional case.

3.1. Component form

Let {e;, i=1,...,n} be an orthonormal basis in R". Consider the component expression
A:A,Je,®e/ Where Alj :Ae,®ej (17)
Here, summation convention applies to repeated indexes. We have
04;; 04
alAj:ei@ejéﬁ:ej@ei. (18)

Regarding G(A) as a function of the components 4;;, and assuming 4;; are independent, it follows by use of
chain rule that

0G 04; 0G
F(A) = L=—¢e®e,. 19
( ) aA], aAT aAﬁe ®el ( )
Hence, we arrive at a remarkable component formula
oG
F(A)].,. = —. 2
FA), =2 (20)

Jl
Note that for the cases where some of the components are related (e.g., symmetric or skew symmetric),
Eq. (20) has to be evaluated in the space of general matrices.

The component formula (20) may be applied to symbolic operations in lower dimension spaces where the
generating function is readily available. To demonstrate this point, consider an example where

ORI @

c

and

f(x)=x"! thatis F(A)=A" (22)
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Note that f'(x) is analytical everywhere except at x = 0. By construction,

g= /x*1 dx = logx. (23)
It follows that
G(A) =logis +1log i, =log il =log(detA) = log(ab — cd). (24)
Using Eq. (20),
oG 0G
da oc 1 b —d
F(A)] = = . 25
F(A)] 3G 0G ab—cd[_c a] (25)
od 0b

As is seen, we recover the inverse formula for a 2 x2 matrix.

3.2. Invariant form

The generating function can be regarded as a function of the invariants of A. Consider for example the
following invariants:

1 1
Ji =trA, JzzztrAz,... J, =—trA". (26)
n

Using formula (5), we find
oJ o/, oJ,
AT AT OAT
Then, applying the chain rule to (6) yields

Al (27)

g e

oG oJ; 0 0 0
_0Goh _0G, 0G L 9G (28)

FA =g aar~ ! T an &,

Note that the powers of A serves as the basis for F(A). If the tensors I, A,A%,... A" are linearly inde-
pendent, the above equation uniquely identifies the coefficients for the general representation

F(A) = ol + oy A + - + 0, A"

Further, with the invariant form (28), the second derivative of G(A) can be readily computed. Indeed, we
have

OF(A) _ &G dJ; o8 96 s (29)
0A  0J;0J, 0AT T 0A ' OJ, DAOAT’

Here ® stands for the tensor product of two second order tensors defined by
(A®B)H = Atr(B"H) (30)

or, in components,

A® B]ijk] = AijBy- (31)
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Starting from (27), the second derivative of the invariants are computed as
2,
0AOAT
%),
OAOAT (32)

2,
OADAT

Here, O and [ are the fourth order zero and identity tensors, and X stands for the Kronecker product of
two tensors defined by

= A"RI+ A RAT + - ARA) T IR(A)

(AXB)H = AHB' (33)
or, in components,
[AK B}ijkl = AuBj- (34)

In the remainder of this paper, we will use a set of slightly different invariants to deduce closed-form
representations for F(A) and it first derivative in lower dimension cases.

4. Two-dimensional case

In this section, we specialize the invariant representations to two-dimensional space to deduce closed-
form expressions for F(A) and its first derivative.

4.1. Preliminaries

Consider a 2x2 tensor A, and denoted by A its deviatoric part

- 1
A=A—3(rA)L (35)
Let
_ 1 -
h=trA, )= trA”. (36)
A straight forward manipulation shows that the characteristic equation of A can be written as
n\ -
<;—‘> —J,=0. (37)
2
Therefore the eigenvalues of A, that is, the roots of (37), are given as
I I =
M—EI—F Ja, i22—1—\/3; (38)

Assume temporarily that A; # 4,. From (38), we readily conclude

N S P G Ve

— A 5 = = 0(21727
a2 2/h
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and

VAR (40)
Further, we have the standard results

ol o), -

oAT 0A” 1)

Here I is the 2D second order identity tensor. We need to evaluate the derivative of J, relative to A. To this
end, first record a formula

0A QAT 1

—=——=01--1Ix1 42

0A  dA" 2 @b (42)
which can be directly verified from the definition of A. Here, [ is the fourth order identity tensors in 2D.
It follows then

o, 1 .

—=|1--IxI|A=A 43

AT { 2@ ] (43)

4.2. Invariant representation for F(A)

From (6), and regarding G(A) as a function of I;, J,, we can write,

3G. oG-
FA) =91 994 44
W) =g T+37A (44)

The derivative of G relative to the invariants can be computed as follows. Assume 4; # /. Recalling that
G(A) = g(4) + g(4), observing g'(x) = f(x), and making use of the relations (39), (40), we obtain

(00 0G0 0G0 fi,
al; 04 0, 3, 0L 2 7
_9G_09Goh 0G0k _fi—f
o, 0oL, 0oL A—l

where we have used the short-hand notations f, = f(4,) and f! = f'(4,) for a =1,2.

In the limiting case where 4, = 4,, the quotient W

Ci :ﬁ7 (&) :fll' (46)

We therefore conclude that, in two-dimensional case,

Ly L DDA )y £ Dy,
FA:{2 1 F A

(45)

Cy

is replaced by the derivative of f, and we have

A=k (47)
fil+fIA it 2y = Ay

4.3. Derivative of F(A)

Starting from (44), using the chain rule leads to
oF(A) 0*G o’G

= I I —

oA anon O Tanon

2
I®AT+A®I}+ TG AoAT aG[ ! }

—— ARA — [ —=I®I1
hon M T T2 ®
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For the case of distinct eigenvalues, the coefficients are derived to be

oG 1, , ,
dy = AT é_t(fl +£3)s
aZG f/ _f/
dy = Sp———_ 2
Ponon 20 —)’ (49)
dy = ?ZG, = fith _2h-1)
aJ2 aJ2 (i] — /12)2 (/11 — 12)3
When 1; = 4,, the coefficients assume the limiting values
1 ! 1 1 l Ui
dll zzfla dl2:§ 1> dZZZE . (50)
In this case we obtain a remarkable formula
aF(A> ot 1 11 AT A 1 1A AT
S =1 AT + AR + o //A AT, (51)

5. Three-dimensional case

Parallel to the two-dimensional case, here we derive the representations for F(A) and its derivative in
three-dimensional space.

5.1. Preliminaries

Consider a second order tensor A in R*, and let

1
A=A- g(trA)I (52)
be the deviatoric part. Introduce the invariants
-1 - - 1 -
[1 = trA, J2 = EtrAz, J3 = gtrAS. (53)

Let 4,, a =1,2,3 be the eigenvalues of A, regarded here as functions of I;, J, and J;. Introduce the no-
tations

Ao=la—=, a=1,2,3,
and
D,=(—2)(Aa—2), a=1,23a#£b#c#c.
We first prove a result that plays an essential rule in the forthcoming development.
Proposition. Regarding the eigenvalues /., a =1,2,3 as functions of the invariants I,, J,, J;, and assume

)vl # /12 7§ 23 ;é /11‘ Then

g 1 0k A o/ 1
611 37 an a’ 6J3 Da ( )
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Proof. First observe that A, are the eigenvalues of A. By the relationship between eigenvalues and principal
invariants, we can readily check that

Z] + /Tz + 13 =0,
Jda + Aads + dady = =T, (55)
111213 = j3.

Differentiating both sides of the above equations yields
di, +dA, +di; =0,
Iddy + b dis + A diy = ds, (56)
Jod3ddy 4+ WAz dds + Aidad s = A,
where use is made of (55), in obtaining (56),. Solving for d1’s in terms of dJ, and dJ; gives
- Addy  dJs

R (57)

The above results imply that
O YV VP |
O _g O _t O _ 1 (58)
611 6]2 Da aJ} Da

The results (54) then follow by recalling that 4, = A, + %‘, so that %;‘ = %, 2”7;’ = % % = ?Tf,’ and so on. [

Returning to the invariants. Similarly to the two-dimensional case, we have the standard results

VAN A

—2 —A, — =A% 59

aAT aAT ( )
and

0A 0A" 1

—=—=01-=I)1L 60

0A 6AT 3 ® ( )
Using the chain rule and invoking (59) and (60) we establish the expression

8y Ligr|a-a

0A 3

. (61)
Ol her|a-a —l(trziz)l = A2
aAT 3 3 ‘ dev*

5.2. Invariant representation for F(A)

Starting from (6), regarding G(A) as a function of the invariants 1, J,, Js, taking the derivative and
making use of (61) yields
oG 0G -  0G -
FA) =—I+—=—A+-—A2 . 62
( ) 611 +6J2 +6J} dev ( )
Recall that G(A) = g(41) + g(42) + g(43), and g'(x) = f(x). Assuming that the eigenvalues are distinct, by
the chain rule we find
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0G <~ 0G 0y Lo
T T L, on 2.3

3G <~ 0G 0/, i: Aafa
CH = —— = —_— =
PTAn T &, A D,’

a=1
0G S~0G 0y o
R R P n v

The degenerate case of repeated eigenvalues can be dealt by the following limiting analysis.
Case I. Two equal roots 1; = 4, # 1;. Expanding f, into the Taylor series at 4, in (63), and taking the
limit 4, — 4, gives

cl_%ﬁ+lf37
2
f1 f3 le (64)
o it + fs N

7/11 _/13 (/11 —/13)2.
Case II. Three equal roots 1y = 4, = 43. Taking the limit as 43 — A, in (64) yields
! 1 1
a=h, a=f =5/ (65)
In this case F(A) assumes a remarkable form

I A 1 1
F(A) = /il + f{A + /1AL, (66)

In summary, we have shown that a tensor function F(A) in three-dimensional space can be represented
as

(i %)+ (S B A+ (S £ Al i A1 # Ja # s # A,
FA) =9 GAa+in+ (%fl +3p4 ﬁ)AJF (/1 e e )Aiev if 4y = A # Js, (67)
S+ A+ fTAG, if 2y =2 = Js.

It is worth noting that Eq. (67); can be recast as
(A — LD(A — Al) (A — LD (A= 4] (A= A4D(A = Al
A == P A Py P + 9
f( ) fl (/Ll — Az)()v] — )\43) (iz — )v])(/bz — /L3) 3 (;u’; — ll)(ﬂq — \,2)
which recovers Sylvester’s formula for a diagonalizable tensors (Horn and Johnson, 1991, p. 401). For the

special case of f(x) =exp(x), a result equivalent to (67) is established in Laufer (1997) via a different
method.

Note also that the formulae (67) apply to any second order tensor, diagonalizable or not. As an example,
consider a Jordan form

1 0
A1
0 2

+ /2

(68)

: (69)
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where all eigenvalues equal to A but only one eigenvector exists. We have

) 010 ) 00 1
A]=1]0 0 11:>[A2]: 0 0 01. (70)
000 000

Since A is traceless, we have Aiev = A”. Then, by (67)s,

VORFAOREYRCS
[F(A)] =

0 74 f@) (71)
0 0 f(4)
This recovers a well-known result in matrix theory, see Horn and Johnson (1991, Section 6.2).
5.3. Derivative of F(A)
Taking the derivative on both sides of (62) and using the chain rule again, we find
OF(A) ’G ’°G ——— ’G )
= I®I — I A" +ARI1 — |I® (A A2
oA anan O Tanan foAT+Asl]+ A 1 (&%) + AL o1
G - - 3G - . 3G T« -
———AQA"+ —— [A® (A} AL, @AT| + —=|A, @ (AZ)"
+6J26J2 ® +6J26J3|: ®( dev) =+ dev® :|+aJ3aJ3|: dev®( dev):|
oG 1 oG
— [ —=IQI| +—=T(A 72
+an{ 3®]+6J;() (72)

where T(A) stands for the fourth order tensor de‘. Expanding AdeV into a polynomial of A, taking the
derivative with respective to A and rewriting the result in term of A, we find

_ I Y _
T(A) = ARI+IHA" - S [A@l+18AT]. (73)

For the case of distinct eigenvalues, the coefficients can again be obtained through direct application of the

chain rule. First, starting from (54), 3, taking the derivative and using (54), 3 repeatedly, after a lengthy but
direct manipulation we find

% 2q 200 —T3) %, 32T, %, 6,

N L= — L = e 74
o, o), X VAV D} ' okdl, D3 (74)

Making use of (54) and (74) we can readily show that

G 1 e 1S
dp = ——=— Tt — 4a
2 ano 3 > . o, 3 > D, ’

PG 1 00 1SS
d;:T_T:_E /]:_E Za
Y AV AR fan3 342Dp,’

*G 3
d ==
YA YA >

a=1

Side  2fuldy = T5)



348 J. Lu | International Journal of Solids and Structures 41 (2004) 337-349

G S [, 02, 0l %2, >
b= g = 2 o )~

2 \Veag, a0, Heanen | T & | 2 D
G s 0\’ 0% S 6fik 73)
A,
dyim 09 N (Y | | e Ot
0= lfa<aJ3) e, 6J3] 2|5 D

The limiting values at repeated eigenvalues are reported as follows.
Case I. Two equal roots A; = A, # /3. Expressing f> and f; into Taylor series at ; and letting A, — 4,
yields,

dip = %4‘%7
1" 21 — £
diy = ?1-1-—9((2 _ﬁ)) )
do—_ N Ni~)s
3(h—23) 3(dy — i3
_ AA-f) A 2o S (76)
=— S+ — s
9 —723) 9 —i3) 9 —1s) 54
23:5(1”{3)4— fi - 25 S+ i >+ 5 ,
30— 23) (i —73) 3 —4) 6(h =43’ 18(4 —a)
iy — 4N - N) 37 VA i "

Gr—23)Y (=2 (=2 (=4) 6 —24)

Case II. Three equal roots 1; = 4, = 23. A straight forward manipulation shows that the coefficients
assume the limiting values

f/ 1" "
dy =%, do="%, diz="—,
3 3 6 77
o f(4) f(S) ( )
dzzZ%» dzszzl—, d33=11%~
Consequently, the derivative in this case takes a remarkable form
oF(A | - 1 - - -
% =+ [A&I +HIMAT| + 10 (A) + A AT+ A, @]
A o T x AT R o (&2 T
+ ﬁ [A ® (Adev) + Adev ®A ] + @ [Adev ® (Adev) ] (78)

6. Concluding remarks

We have established a new method in obtaining the exact expansion for tensor function F(A) utilizing
the idea of differentiating a scalar function. Completely general, finite term representations applicable to
any n x n tensor are derived. In two- and three-dimensional cases, the formulae are given in closed, sin-
gularity-free form, which can be readily employed in numerical computations. Applications of the proposed
formulae in computational mechanics will be discussed in a forthcoming publication.

During the review of the paper, a reviewer has pointed out a recent publication by Itskov on the ex-
ponential functions of general unsymmetric tensors (Itskov, 2003). Itskov has used a different method
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involving the so-called Dunford-Taylor integral representation, see also Horn and Johnson (1991, Section
6.2). The advantage of the current approach lies at the flexibility in parameterizing the generating function,
by which different representations for F(A) can be readily obtained.
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