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Abstract

A general method is presented for determining the exact expansions of a tensor function FðAÞ, where A is a second
order tensor in n-dimensional Euclidean space, and FðAÞ is defined by the power series. It is shown that FðAÞ can be
obtained by differentiating a scalar function of the eigenvalues of A. Using this method, closed-form, singularity-free

expressions of arbitrary tensor functions and their first derivatives are deduced in two- and three-dimensional cases.
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1. Introduction

The aim of this paper is to establish a general method for determining finite term expansions for a tensor
function FðAÞ defined by the power series
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FðAÞ ¼ a0Iþ a1Aþ � � � þ aiA
i þ � � � ð1Þ
Here A is a second order tensor in n-dimensional Euclidean space. The scalar function
f ðxÞ ¼ a0 þ a1xþ � � � þ aixi þ � � � ð2Þ
is sometimes called the stem function for FðAÞ. It is known that if the spectrum of A lies within the radius of
convergence of the series (2), then the tensor series (1) converges (Horn and Johnson, 1991). Tensor

functions defined via power series are frequently used in continuum and computational mechanics. For

instance, the exponential function is often employed in the numerical integrating of rate equation of the
form _XX ¼ AX. If the full Newton–Raphson algorithm is employed in computations, the derivative of

function FðAÞ is required. Hence, it is always desirable to have closed-form, finite term expressions for FðAÞ
and its derivative.
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There exist several methods for determining FðAÞ and its derivative for a symmetric tensor A. Since a

symmetric tensor possesses a full set of orthogonal eigenvectors, one can represent FðAÞ and its derivative
in spectrum form, see Hill (1978) and Ogden (1984, Section 3.5) for a classical treatment in the context of

generalized strains. In recent years, the spectrum representations have been widely used in computational
mechanics (Simo and Taylor, 1991; Miehe, 1994; Miehe, 1998; Miehe and Lambrecht, 2001; Papadopoulos

and Lu, 1998). Alternatively, exploiting the fact that FðAÞ is an isotropic function of A, one can directly
express FðAÞ in terms of polynomials of A, and likewise for its derivative (Guo, 1984; Hoger and Carlson,
1984; Ting, 1985). In contrast, there does not appear to exist a well-developed algorithm in the literature for

the general case, especially if the tensor A is not diagonalizable. Algorithms based on truncated infinite

series have been proposed (de Souza Neto, 2001). The accuracy and effectiveness of such algorithms is

limited by round-off and choice of termination criterion.

In this paper, we develop a novel method for computing an arbitrary tensor function of a general un-
symmetric tensor. We show that FðAÞ can be obtained by differentiating its generating function, a scalar

function of the eigenvalues of A. This approach is inspired by a recent paper of Kusnezov (1995) on the

exponential map for SUðnÞ group (i.e., group of tensors such that detA ¼ 1), where author proposed the
idea of obtaining the exponential map from differentiating a scalar function with respect to group

parameters. In the present work, this approach has been systematically extended to any tensor function. In

addition, having identified FðAÞ as the derivative of a scalar function, the derivative of FðAÞ can be readily
computed as the second derivative. The method is then applied to two- and three-dimensional cases to

establish closed-form representations for arbitrary tensor functions and the first derivatives. To the best of
the author�s knowledge, the main theorem established in this paper, as well as the representation formulae
in two- and three-dimensional cases, have not been reported in the literature.

The paper is organized as follows: the main theorem is presented in Section 2, followed by a discussion of

various representations of the general formula under different parameterizations. Closed-form, singularity-

free representations for FðAÞ and its derivative in two- and three-dimensional cases are deduced in Sections
4 and 5.
2. General formula

In this section, we show that an arbitrary tensor function FðAÞ can be obtained by differentiating a
scalar-valued function of A, referred to as the generating function. To this end, first introduce an auxiliary

function
gðxÞ ¼
Z

f ðxÞdx ¼ g0 þ a0xþ
1

2
a1x2 þ � � � ; ð3Þ
where g0 ia an arbitrary constant. It is known that the power series in (3) has the radius of convergence no
less than that of (2). Let fki; i ¼ 1; . . . ; ng be the eigenvalues of A. Given FðAÞ, the associated generating

function is defined by
GðAÞ ¼ gðk1Þ þ gðk2Þ þ � � � þ gðknÞ: ð4Þ

Next, define the derivative of a scalar-valued function /ðAÞ by the standard formula (assuming all the
requisite smoothness conditions are satisfied)
o/ðAÞ
oA

�H ¼ d

de

����
e¼0

/ðAþ eHÞ 8H; ð5Þ
where the operation ð�Þ means the inner product U � V ¼ trðUTVÞ, and the superscript T stands for tensor
transpose.
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The main result of this paper is as follows:

Theorem. Let f ðxÞ be an analytical function and FðAÞ be the associated tensor function defined by (1), and let

GðAÞ be the generating function given in (4). Then
FðAÞ ¼ oG

oAT
ð6Þ
for any second order tensor A.

Proof. First, it is well-known that, if jkij < R ði ¼ 1; . . . ; nÞ where R is radius of convergence of power series
(3)2, then fgðkiÞ; i ¼ 1; . . . ; ng are the eigenvalues of the tensor GðAÞ defined by
GðAÞ ¼ g0Iþ a0Aþ � � � þ 1

iþ 1 aiA
iþ1 þ � � � ð7Þ
See, e.g. Ting (1985). Hence, we identify GðAÞ ¼ trGðAÞ. It follows then
GðAþ eHÞ ¼ tr g0I
�

þ a0ðAþ eHÞ þ � � � þ 1

ðiþ 1Þ! aiðAþ eHÞiþ1 þ � � �
�
: ð8Þ
Notice
d

de

����
e¼0
tr ðA
h

þ eHÞiþ1
i
¼ ðiþ 1Þtr AiH

� �
¼ ðiþ 1ÞðATÞi �H; ð9Þ
where used is made of the cyclic property tr½A1A2 � � �Am� ¼ tr½A2 � � �AmA1�. Differentiating both sides of (8)
with respect to e at e ¼ 0 leads to
oGðAÞ
oA

�H ¼ a0I
�

þ a1A
T þ � � � þ aiðATÞi þ � � �

�
�H ¼ FðATÞ �H: ð10Þ
Therefore,
FðATÞ ¼ oG
oA

: ð11Þ
Observing that
FðATÞ ¼ ðFðAÞÞT and
oG
oA

	 
T
¼ oG

oAT
; ð12Þ
and taking the transpose of both sides of (11) yields the stated result. h

Having established (6), it follows that the first derivative of FðAÞ is then given by

oFðAÞ
oA

¼ o2G

oAoAT
ð13Þ
or, using components,
o½FðAÞ�ij
oAkl

¼ o2G
oAkl oAji

: ð14Þ
In particular, if A is symmetric, we obtain
FðAÞ ¼ oG
oA

;
oFðAÞ
oA

¼ o2G
oAoA

: ð15Þ
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As a useful corollary, Eq. (15) shows that if A is symmetric, then oFðAÞ
oA

possesses major symmetry, in the

sense that
o½FðAÞ�ij
oAkl

¼ o½FðAÞ�kl
oAij

: ð16Þ
The generating function depends on the eigenvalues of A. Once the eigenvalues of A are obtained, the

formulae (6) and (13) can be directly applied. The method is completely general, as it applies to any tensor

function and arbitrary tensor, diagonalizable or not. The method is particularly effective in lower dimension

cases where closed-form eigenvalues are available. As will become evident later, the major advantages of
this approach relate to the facts that: (1) the generating functions can be judiciously parameterized, thus

allowing for optimal representations most suitable for a given problem; and (2) no knowledge of the

eigenspace is required. This largely alleviates the difficulty in dealing with tensors which do not possess a

full set of eigenvectors.
3. Selected representations

In this section we provide some representations for the general formula (6) in n-dimensional case.

3.1. Component form

Let fei; i ¼ 1; . . . ; ng be an orthonormal basis in Rn. Consider the component expression
A ¼ Aijei � ej where Aij ¼ A � ei � ej: ð17Þ
Here, summation convention applies to repeated indexes. We have
oAij

oA
¼ ei � ej )

oAij

oAT
¼ ej � ei: ð18Þ
Regarding GðAÞ as a function of the components Aij, and assuming Aij are independent, it follows by use of

chain rule that
FðAÞ ¼ oG
oAji

oAji

oAT
¼ oG

oAji
ei � ej: ð19Þ
Hence, we arrive at a remarkable component formula
½FðAÞ�ij ¼
oG
oAji

: ð20Þ
Note that for the cases where some of the components are related (e.g., symmetric or skew symmetric),

Eq. (20) has to be evaluated in the space of general matrices.
The component formula (20) may be applied to symbolic operations in lower dimension spaces where the

generating function is readily available. To demonstrate this point, consider an example where
½A� ¼ a d
c b

� �
; ð21Þ
and
f ðxÞ ¼ x�1 that is FðAÞ ¼ A�1: ð22Þ
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Note that f ðxÞ is analytical everywhere except at x ¼ 0. By construction,
g ¼
Z

x�1 dx ¼ log x: ð23Þ
It follows that
GðAÞ ¼ log k1 þ log k2 ¼ log k1k2 ¼ logðdetAÞ ¼ logðab� cdÞ: ð24Þ

Using Eq. (20),
½FðAÞ� ¼

oG
oa

oG
oc

oG
od

oG
ob

2
664

3
775 ¼ 1

ab� cd

b �d

�c a

" #
: ð25Þ
As is seen, we recover the inverse formula for a 2 · 2 matrix.
3.2. Invariant form

The generating function can be regarded as a function of the invariants of A. Consider for example the

following invariants:
J1 ¼ trA; J2 ¼
1

2
trA2; . . . Jn ¼

1

n
trAn: ð26Þ
Using formula (5), we find
oJ1
oAT

¼ I;
oJ2
oAT

¼ A; . . .
oJn
oAT

¼ An�1: ð27Þ
Then, applying the chain rule to (6) yields
FðAÞ ¼ oG
oJi

oJi
oAT

¼ oG
oJ1

Iþ oG
oJ2

Aþ � � � þ oG
oJn

An�1: ð28Þ
Note that the powers of A serves as the basis for FðAÞ. If the tensors I;A;A2; . . . ;An�1 are linearly inde-
pendent, the above equation uniquely identifies the coefficients for the general representation
FðAÞ ¼ a0Iþ a1Aþ � � � þ an�1A
n�1:
Further, with the invariant form (28), the second derivative of GðAÞ can be readily computed. Indeed, we
have
oFðAÞ
oA

¼ o2G
oJi oJj

oJi
oAT

� oJj
oA

þ oG
oJk

o2Jk
oAoAT

: ð29Þ
Here � stands for the tensor product of two second order tensors defined by
ðA� BÞH ¼ A trðBTHÞ ð30Þ
or, in components,
½A� B�ijkl ¼ AijBkl: ð31Þ
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Starting from (27), the second derivative of the invariants are computed as
o2J1
oAoAT

¼ O;

o2J2
oAoAT

¼ I;

..

.

o2Jn
oAoAT

¼ An�2
� Iþ An�3

�AT þ � � � þ A� ðAn�3ÞT þ I� ðAn�2ÞT:

ð32Þ
Here, O and I are the fourth order zero and identity tensors, and � stands for the Kronecker product of

two tensors defined by
ðA�BÞH ¼ AHBT ð33Þ

or, in components,
½A�B�ijkl ¼ AikBjl: ð34Þ
In the remainder of this paper, we will use a set of slightly different invariants to deduce closed-form

representations for FðAÞ and it first derivative in lower dimension cases.
4. Two-dimensional case

In this section, we specialize the invariant representations to two-dimensional space to deduce closed-

form expressions for FðAÞ and its first derivative.

4.1. Preliminaries

Consider a 2 · 2 tensor A, and denoted by �AA its deviatoric part
�AA ¼ A� 1
2
ðtrAÞI: ð35Þ
Let
I1 ¼ trA; �JJ2 ¼
1

2
tr �AA2: ð36Þ
A straight forward manipulation shows that the characteristic equation of A can be written as
k

	
� I1
2


2
� �JJ2 ¼ 0: ð37Þ
Therefore the eigenvalues of A, that is, the roots of (37), are given as
k1 ¼
I1
2
þ

ffiffiffiffi
�JJ2

p
; k2 ¼

I1
2
�

ffiffiffiffi
�JJ2

p
: ð38Þ
Assume temporarily that k1 6¼ k2. From (38), we readily conclude
oka

oI1
¼ 1
2
;

oka

o�JJ2
¼ ð�1Þa�1

2
ffiffiffiffi
�JJ2

p ; a ¼ 1; 2; ð39Þ
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and
2
ffiffiffiffi
�JJ2

p
¼ k1 � k2: ð40Þ
Further, we have the standard results
o�II1
oAT

¼ I;
o�JJ2
o�AAT

¼ �AA: ð41Þ
Here I is the 2D second order identity tensor. We need to evaluate the derivative of �JJ2 relative to A. To this
end, first record a formula
o�AA

oA
¼ o�AAT

oAT
¼ I� 1

2
I� I; ð42Þ
which can be directly verified from the definition of �AA. Here, I is the fourth order identity tensors in 2D.
It follows then
o�JJ2
oAT

¼ I

�
� 1
2
I� I

�
�AA ¼ �AA: ð43Þ
4.2. Invariant representation for F(A)

From (6), and regarding GðAÞ as a function of I1, �JJ2, we can write,
FðAÞ ¼ oG
oI1

Iþ oG
o�JJ2

�AA: ð44Þ
The derivative of G relative to the invariants can be computed as follows. Assume k1 6¼ k2. Recalling that
GðAÞ ¼ gðk1Þ þ gðk2Þ, observing g0ðxÞ ¼ f ðxÞ, and making use of the relations (39), (40), we obtain
c1 :¼
oG
oI1

¼ oG
ok1

ok1
oI1

þ oG
ok2

ok2
oI1

¼ f1 þ f2
2

;

c2 :¼
oG
o�JJ2

¼ oG
ok1

ok1
o�JJ2

þ oG
ok2

ok2
o�JJ2

¼ f1 � f2
k1 � k2

;

ð45Þ
where we have used the short-hand notations fa ¼ f ðkaÞ and f 0
a ¼ f 0ðkaÞ for a ¼ 1; 2.

In the limiting case where k1 ¼ k2, the quotient
f ðk1Þ�f ðk2Þ

k1�k2
is replaced by the derivative of f , and we have
c1 ¼ f1; c2 ¼ f 0
1: ð46Þ
We therefore conclude that, in two-dimensional case,
FðAÞ ¼
f1þf2
2

Iþ f1�f2
k1�k2

�AA if k1 6¼ k2;

f1Iþ f 0
1
�AA if k1 ¼ k2:

(
ð47Þ
4.3. Derivative of F(A)

Starting from (44), using the chain rule leads to
oFðAÞ
oA

¼ o2G
oI1 oI1

I� Iþ o2G
oI1 o�JJ2

I
h

� �AAT þ �AA� I
i
þ o2G
o�JJ2 o�JJ2

�AA� �AAT þ oG
o�JJ2

I

�
� 1
2
I� I

�
: ð48Þ
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For the case of distinct eigenvalues, the coefficients are derived to be
d11 :¼
o2G
oI1 oI1

¼ 1
4
ðf 0
1 þ f 0

2Þ;

d12 :¼
o2G

oI1 o�JJ2
¼ f 0

1 � f 0
2

2ðk1 � k2Þ
;

d22 :¼
o2G

o�JJ2 o�JJ2
¼ f 0

1 þ f 0
2

ðk1 � k2Þ2
� 2ðf1 � f2Þ
ðk1 � k2Þ3

:

ð49Þ
When k1 ¼ k2, the coefficients assume the limiting values
d11 ¼
1

2
f 0
1; d12 ¼

1

2
f 00
1 ; d22 ¼

1

6
f 000
1 : ð50Þ
In this case we obtain a remarkable formula
oFðAÞ
oA

¼ f 0
1Iþ

1

2
f 00
1 I
h

� �AAT þ �AA� I
i
þ 1
6
f 000
1
�AA� �AAT: ð51Þ
5. Three-dimensional case

Parallel to the two-dimensional case, here we derive the representations for FðAÞ and its derivative in
three-dimensional space.

5.1. Preliminaries

Consider a second order tensor A in R3, and let
�AA ¼ A� 1
3
ðtrAÞI ð52Þ
be the deviatoric part. Introduce the invariants
I1 ¼ trA; �JJ2 ¼
1

2
tr �AA2; �JJ3 ¼

1

3
tr �AA3: ð53Þ
Let ka, a ¼ 1; 2; 3 be the eigenvalues of A, regarded here as functions of I1, �JJ2 and �JJ3. Introduce the no-
tations
�kka ¼ ka �
I1
3
; a ¼ 1; 2; 3;
and
Da ¼ ðka � kbÞðka � kcÞ; a ¼ 1; 2; 3; a 6¼ b 6¼ c 6¼ c:
We first prove a result that plays an essential rule in the forthcoming development.

Proposition. Regarding the eigenvalues ka, a ¼ 1; 2; 3 as functions of the invariants I1, �JJ2, �JJ3, and assume

k1 6¼ k2 6¼ k3 6¼ k1. Then
oka

oI1
¼ 1
3
;

oka

o�JJ2
¼

�kka

Da
;

oka

o�JJ3
¼ 1

Da
: ð54Þ
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Proof. First observe that �kka are the eigenvalues of �AA. By the relationship between eigenvalues and principal
invariants, we can readily check that
�kk1 þ �kk2 þ �kk3 ¼ 0;
�kk1 �kk2 þ �kk2 �kk3 þ �kk3 �kk1 ¼ ��JJ2;
�kk1 �kk2 �kk3 ¼ �JJ3:

ð55Þ
Differentiating both sides of the above equations yields
d�kk1 þ d�kk2 þ d�kk3 ¼ 0;
�kk1 d�kk1 þ �kk2 d�kk2 þ �kk3 d�kk3 ¼ d�JJ2;
�kk2 �kk3 d�kk1 þ �kk1 �kk3 d�kk2 þ �kk1 �kk2 d�kk3 ¼ d�JJ3;

ð56Þ
where use is made of (55)1 in obtaining (56)2. Solving for d�kk�s in terms of d�JJ2 and d�JJ3 gives
d�kka ¼
�kka d�JJ2
Da

þ d
�JJ3
Da

: ð57Þ
The above results imply that
o�kka

oI1
¼ 0; o�kka

o�JJ2
¼

�kka

Da
;

o�kka

o�JJ3
¼ 1

Da
: ð58Þ
The results (54) then follow by recalling that ka ¼ �kka þ I1
3
, so that oka

oI1
¼ 1

3
, oka
o�JJ2

¼ oka
o�kka

o�kka
o�JJ2

¼ �kka
Da
, and so on. h

Returning to the invariants. Similarly to the two-dimensional case, we have the standard results
o�JJ2
o�AAT

¼ �AA;
o�JJ3
o�AAT

¼ �AA2; ð59Þ
and
o�AA

oA
¼ o�AAT

oAT
¼ I� 1

3
I� I: ð60Þ
Using the chain rule and invoking (59) and (60) we establish the expression
o�JJ2
oAT

¼ I

�
� 1
3
I� I

�
�AA ¼ �AA;

o�JJ3
oAT

¼ I

�
� 1
3
I� I

�
�AA2 ¼ �AA2 � 1

3
ðtr �AA2ÞI :¼ �AA2dev:

ð61Þ
5.2. Invariant representation for F(A)

Starting from (6), regarding GðAÞ as a function of the invariants I1, �JJ2, �JJ3, taking the derivative and
making use of (61) yields
FðAÞ ¼ oG
oI1

Iþ oG
o�JJ2

�AAþ oG
o�JJ3

�AA2dev: ð62Þ
Recall that GðAÞ ¼ gðk1Þ þ gðk2Þ þ gðk3Þ, and g0ðxÞ ¼ f ðxÞ. Assuming that the eigenvalues are distinct, by
the chain rule we find
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c1 :¼
oG
oI1

¼
X3
a¼1

oG
oka

oka

oI1
¼

X3
a¼1

fa
3
;

c2 :¼
oG
o�JJ2

¼
X3
a¼1

oG
oka

oka

o�JJ2
¼

X3
a¼1

�kkafa
Da

;

c3 :¼
oG
o�JJ3

¼
X3
a¼1

oG
oka

oka

o�JJ3
¼

X3
a¼1

fa
Da

:

ð63Þ
The degenerate case of repeated eigenvalues can be dealt by the following limiting analysis.

Case I. Two equal roots k1 ¼ k2 6¼ k3. Expanding f2 into the Taylor series at k1 in (63), and taking the
limit k2 ! k1 gives
c1 ¼
2

3
f1 þ

1

3
f3;

c2 ¼
1

3
f 0
1 þ

2

3

f3 � f1
k3 � k1

;

c3 ¼
f 0
1

k1 � k3
þ f3 � f1
ðk1 � k3Þ2

:

ð64Þ
Case II. Three equal roots k1 ¼ k2 ¼ k3. Taking the limit as k3 ! k1 in (64) yields
c1 ¼ f1; c2 ¼ f 0
1; c3 ¼

1

2
f 00
1 : ð65Þ
In this case FðAÞ assumes a remarkable form
FðAÞ ¼ f1Iþ f 0
1
�AAþ 1

2
f 00
1
�AA2dev: ð66Þ
In summary, we have shown that a tensor function FðAÞ in three-dimensional space can be represented
as
FðAÞ ¼

P3

a¼1
fa
3

� �
Iþ

P3

a¼1
�kkafa
Da

� �
�AAþ

P3

a¼1
fa
Da

� �
�AA2dev if k1 6¼ k2 6¼ k3 6¼ k1;

2
3
f1 þ 1

3
f3

� �
Iþ 1

3
f 0
1 þ 2

3

f3�f1
k3�k1

� �
�AAþ f 0

1

k1�k3
þ f3�f1

ðk1�k3Þ2

	 

�AA2dev if k1 ¼ k2 6¼ k3;

f1Iþ f 0
1
�AAþ 1

2
f 00
1
�AA2dev if k1 ¼ k2 ¼ k3:

8>>>>><
>>>>>:

ð67Þ
It is worth noting that Eq. (67)1 can be recast as
f ðAÞ ¼ f1
ðA� k2IÞðA� k3IÞ
ðk1 � k2Þðk1 � k3Þ

þ f2
ðA� k1IÞðA� k3IÞ
ðk2 � k1Þðk2 � k3Þ

þ f3
ðA� k1IÞðA� k2IÞ
ðk3 � k1Þðk3 � k2Þ

; ð68Þ
which recovers Sylvester�s formula for a diagonalizable tensors (Horn and Johnson, 1991, p. 401). For the
special case of f ðxÞ ¼ expðxÞ, a result equivalent to (67) is established in Laufer (1997) via a different
method.

Note also that the formulae (67) apply to any second order tensor, diagonalizable or not. As an example,

consider a Jordan form
½A� ¼
k 1 0

0 k 1

0 0 k

2
64

3
75; ð69Þ
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where all eigenvalues equal to k but only one eigenvector exists. We have
½�AA� ¼
0 1 0
0 0 1
0 0 0

" #
) ½�AA2� ¼

0 0 1
0 0 0
0 0 0

" #
: ð70Þ
Since �AA2 is traceless, we have �AA2dev ¼ �AA2. Then, by (67)3,
½FðAÞ� ¼
f ðkÞ f 0ðkÞ 1

2
f 00ðkÞ

0 f ðkÞ f 0ðkÞ
0 0 f ðkÞ

2
4

3
5: ð71Þ
This recovers a well-known result in matrix theory, see Horn and Johnson (1991, Section 6.2).

5.3. Derivative of F(A)

Taking the derivative on both sides of (62) and using the chain rule again, we find
oFðAÞ
oA

¼ o2G
oI1 oI1

I� Iþ o2G
oI1 o�JJ2

I
h

� �AAT þ �AA� I
i
þ o2G
oI1 o�JJ3

I
h

� ð�AA2devÞ
T þ �AA2dev � I

i

þ o2G
o�JJ2 o�JJ2

�AA� �AAT þ o2G
o�JJ2 o�JJ3

�AA
h

� ð�AA2devÞ
T þ �AA2dev � �AAT

i
þ o2G
o�JJ3 o�JJ3

�AA2dev

h
� ð�AA2devÞ

T
i

þ oG
o�JJ2

I

�
� 1
3
I� I

�
þ oG
o�JJ3

TðAÞ; ð72Þ
where TðAÞ stands for the fourth order tensor o�AA2
dev

oA
. Expanding �AA2dev into a polynomial of A, taking the

derivative with respective to A and rewriting the result in term of �AA, we find
TðAÞ ¼ �AA� Iþ I� �AAT � 2
3

�AA
h

� Iþ I� �AAT
i
: ð73Þ
For the case of distinct eigenvalues, the coefficients can again be obtained through direct application of the

chain rule. First, starting from (54)2;3, taking the derivative and using (54)2;3 repeatedly, after a lengthy but

direct manipulation we find
o2ka

o�JJ2 o�JJ2
¼ � 2ð

�kk3a � �JJ3Þ
D3a

;
o2ka

o�JJ2 o�JJ3
¼ � 3

�kk2a � �JJ2
D3a

;
o2ka

o�JJ3 o�JJ3
¼ � 6

�kka

D3a
: ð74Þ
Making use of (54) and (74) we can readily show that
d11 :¼
o2G
oI1 oI1

¼ 1
3

X3
a¼1

f 0
a

oka

oI1
¼ 1
9

X3
a¼1

f 0
a;

d12 :¼
o2G

oI1 o�JJ2
¼ 1
3

X3
a¼1

f 0
a

oka

o�JJ2
¼ 1
3

X3
a¼1

�kkaf 0
a

Da
;

d13 :¼
o2G

o�JJ1 o�JJ3
¼ 1
3

X3
a¼1

f 0
a

oka

o�JJ3
¼ 1
3

X3
a¼1

f 0
a

Da
;

d22 :¼
o2G

o�JJ2 o�JJ2
¼

X3
a¼1

f 0
a

oka

o�JJ2

	 
2"
þ fa

o2ka

o�JJ2 o�JJ2

#
¼

X3
a¼1

f 0
a
�kk2a

D2a

"
� 2fað

�kk3a � �JJ3Þ
D3a

#
;
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d23 :¼
o2G

o�JJ2 o�JJ3
¼

X3
a¼1

f 0
a

oka

o�JJ2

oka

o�JJ3

�
þ fa

o2ka

o�JJ2 o�JJ3

�
¼

X3
a¼1

f 0
a
�kka

D2a

"
� fað3�kk2a � �JJ2Þ

D3a

#
;

d33 :¼
o2G

o�JJ3 o�JJ3
¼

X3
a¼1

f 0
a

oka

o�JJ3

	 
2"
þ fa

o2ka

o�JJ3 o�JJ3

#
¼

X3
a¼1

f 0
a

D2a

"
� 6fa

�kka

D3a

#
:

ð75Þ
The limiting values at repeated eigenvalues are reported as follows.

Case I. Two equal roots k1 ¼ k2 6¼ k3. Expressing f2 and f 0
2 into Taylor series at k1 and letting k2 ! k1

yields,
d11 ¼
2f 0
1

9
þ f 0

3

9
;

d12 ¼
f 00
1

9
þ 2ðf

0
1 � f 0

3Þ
9ðk1 � k3Þ

;

d13 ¼
f 00
1

3ðk1 � k3Þ
� f 0

1 � f 0
3

3ðk1 � k3Þ2
;

d22 ¼ � 4ðf1 � f3Þ
9ðk1 � k3Þ3

þ 4f 0
3

9ðk1 � k3Þ2
þ 2f 00

1

9ðk1 � k3Þ
þ f 000

1

54
;

d23 ¼
5ðf1 � f3Þ
3ðk1 � k3Þ4

� f 0
1

ðk1 � k3Þ3
� 2f 0

3

3ðk1 � k3Þ3
þ f 00

1

6ðk1 � k3Þ2
þ f 000

1

18ðk1 � k3Þ
;

d33 ¼ � 4ðf1 � f3Þ
ðk1 � k3Þ5

þ 3f 0
1

ðk1 � k3Þ4
þ f 0

3

ðk1 � k3Þ4
� f 00

1

ðk1 � k3Þ3
þ f 000

1

6ðk1 � k3Þ2
:

ð76Þ
Case II. Three equal roots k1 ¼ k2 ¼ k3. A straight forward manipulation shows that the coefficients

assume the limiting values
d11 ¼
f 0
1

3
; d12 ¼

f 00
1

3
; d13 ¼

f 000
1

6
;

d22 ¼
f 000
1

6
; d23 ¼

f ð4Þ
1

24
; d33 ¼

f ð5Þ
1

120
:

ð77Þ
Consequently, the derivative in this case takes a remarkable form
oFðAÞ
oA

¼ f 0
1Iþ

1

2
f 00
1

�AA� I
h

þ I� �AAT
i
þ 1
6
f 000
1 ½I� ð�AA2devÞ

T þ �AA� �AAT þ �AA2dev � I�

þ f ð4Þ
1

24
½�AA� ð�AA2devÞ

T þ �AA2dev � �AAT� þ f ð5Þ
1

120
½�AA2dev � ð�AA2devÞ

T�: ð78Þ
6. Concluding remarks

We have established a new method in obtaining the exact expansion for tensor function FðAÞ utilizing
the idea of differentiating a scalar function. Completely general, finite term representations applicable to

any n� n tensor are derived. In two- and three-dimensional cases, the formulae are given in closed, sin-
gularity-free form, which can be readily employed in numerical computations. Applications of the proposed

formulae in computational mechanics will be discussed in a forthcoming publication.
During the review of the paper, a reviewer has pointed out a recent publication by Itskov on the ex-

ponential functions of general unsymmetric tensors (Itskov, 2003). Itskov has used a different method
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involving the so-called Dunford–Taylor integral representation, see also Horn and Johnson (1991, Section

6.2). The advantage of the current approach lies at the flexibility in parameterizing the generating function,

by which different representations for FðAÞ can be readily obtained.
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